Explanation of $B \rightarrow$
 $K^{*} \ell^{+} \ell^{-}$and muon g-2 anomalies with leptoquarks

Chuan-Hung Chen (NCKU)
In collaboration with
H. Okada and T. Nomura
based on the work in PRD92(16)

Motivation to search for new physics:

Some unsolved problems, such as neutrino mass, dark matter, matter-antimatter asymmetry, cannot be explained in the SM, the SM is an effective theory at the electroweak scale
\square It will be exciting if any excesses from the SM predictions are found in experiments
\square Some data with more than 3σ deviations from the SM predictions were shown over the past few years: for instance,
$>$ muon anomalous magnetic dipole moment, muon g-2

$$
\Delta a_{\mu}=a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=(28.8 \pm 8.0) \times 10^{-10} P D G
$$

$>$ Angular observable P_{5}^{\prime} of $B \rightarrow K^{*} \mu^{+} \mu^{-}$:
Descotes-Genon etal, JHEP1301(13)

$$
\begin{align*}
& P_{5}^{\prime}=\frac{J_{5}}{\sqrt{-J_{2 c} J_{2 s}}}, \quad J_{5}=\sqrt{2} R e\left(A_{0}^{L} A_{\perp}^{L *}\right), \begin{array}{l}
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{K} d \cos \theta_{l} d \phi}=\frac{9}{32 \pi}\left[J_{1 s} \sin ^{2} \theta_{K}+J_{1 c} \cos ^{2} \theta_{K}+\left(J_{2 s} \sin ^{2} \theta_{K}+J_{2 c} \cos \theta_{K}^{2}\right) \cos 2 \theta_{l}\right. \\
J_{2 c}=-\left|A_{0}^{L}\right|^{2}, \quad J_{2 s}=\frac{1}{4}\left(\left|A_{\|}^{L}\right|^{2}+\left|A_{\perp}^{L}\right|^{2}\right),
\end{array} \begin{array}{l}
+J_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi+J_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+J_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi \\
\\
+\left(J_{6 s} \sin ^{2} \theta_{K}+J_{6 c} \cos ^{2} \theta_{K}\right) \cos \theta_{l}+J_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi+J_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi \\
\end{array}
\end{align*}
$$

3.7σ deviations, LHCb, PRL111(13)

(b) Result for P_{5}^{\prime}

$\Delta R e C_{9}=-1.04 \pm 0.25$ to fit the data, 3.4σ deviations, LHCb, JHEP1602(16)
2.1σ at Belle, arXiv: 1604.04042 [hep-ex]
$>$ lepton non-universal couplings, $R_{D}, R_{D^{*}}$, and R_{K}

$$
R_{D^{(*)}}=\frac{B R\left(B \rightarrow D^{(*)} \tau v\right)}{B R\left(B \rightarrow D^{(*)} \ell v\right)}
$$

List of Observables			
Observable	Experimental Results		SM Prediction
	Experiment	Measured value	
R_{D}	Belle	$0.375 \pm 0.064 \pm 0.026 \quad[18]$	0.299 ± 0.011 [19]
	BaBar	$0.440 \pm 0.058 \pm 0.042 \quad[20,21]$	0.300 ± 0.008 [22]
	HFAG average	$0.397 \pm 0.040 \pm 0.028 \quad[17]$	$\begin{gathered} 0.299 \pm 0.003[23] \\ \mathbf{0 . 3 0 0} \pm \mathbf{0 . 0 1 1} \end{gathered}$
$R_{D^{*}}$	Belle	$0.293 \pm 0.038 \pm 0.015 \quad[18]$	$\begin{gathered} 0.252 \pm 0.003[24] \\ 0.254 \\ \pm \mathbf{0 . 0 0 4} \end{gathered}$
	Belle	$0.302 \pm 0.030 \pm 0.011 \quad[25]$	
	BaBar	$0.332 \pm 0.024 \pm 0.018 \quad[20,21]$	
	LHCb	$0.336 \pm 0.027 \pm 0.030 \quad[26]$	
	HFAG average	$0.316 \pm 0.016 \pm 0.010 \quad[17]$	
	Belle	$0.276 \pm 0.034{ }_{-0.026}^{+0.029} \quad[27]$	
	Our average	0.310 ± 0.017	

$$
R_{K}=\left.\frac{\mathcal{B}\left(B \rightarrow K \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K e^{+} e^{-}\right)}\right|_{q^{2} \in[1,6] \mathrm{GeV}} ^{\exp }=0.745_{-0.074}^{+0.090} \pm 0.036 . \quad 2.6 \sigma, \text { LHCb, PRL113(14) }
$$

\square Take these excesses seriously, we explain the anomalies with leptoquarks

Extension of the SM with leptoquarks (LQs):

Properties of LQ:
(a) scalar (our case) or vector
(b) simultaneously couple to the SM quarks and leptons
(c) muon g-2 is from one-loop; $b \rightarrow s \ell^{+} \ell^{-}$and $\mathrm{b} \rightarrow c \ell^{-} v$ are from tree

Sketched Feynman diagrams

T. To get the top-quark enhancement for muon g-2, we consider a scalar doublet LQ; to smear the constraints from $B_{S} \rightarrow \mu^{+} \mu^{-}$, we also consider a scalar triplet LQ
\square Charge assignment $\left(Q=I_{3}+Y\right)$:
For doublet LQ:

$$
\begin{gathered}
\bar{Q}_{L} \Phi_{Y} \ell_{R}:-\frac{1}{6}+Y-1=0, Y=\frac{7}{6} \\
\bar{\ell}_{L} \Phi_{Y}^{\prime} u_{R}\left(d_{R}\right): \frac{1}{2}+Y+\frac{2}{3}\left(-\frac{1}{3}\right)=0, Y=-\frac{7}{6}\left(-\frac{1}{6}\right)
\end{gathered}
$$

If we take $\Phi_{Y}^{\prime}=i \sigma_{2} \Phi_{Y}^{*}$, the LQ can couple to t_{L} and t_{R}; hence, the representaion for doublet LQ is :

$$
\Phi_{7 / 6}=\binom{\phi^{\frac{5}{3}}}{\phi^{\frac{2}{3}}}
$$

For triplet LQ:

$$
\bar{Q}^{c}{ }_{L} \mathrm{i}_{2} \Delta_{Y} \ell_{L}=Q_{L}^{T} C i \sigma_{2} \Delta_{Y} \ell_{L}: \frac{1}{6}+Y-\frac{1}{2}=0, Y=\frac{1}{3}
$$

the representaion for doublet LQ is :

$$
\Delta_{1 / 3}=\left(\begin{array}{cc}
\delta^{1 / 3} / \sqrt{2} & \delta^{4 / 3} \\
\delta^{-2 / 3} & \delta^{1 / 3} / \sqrt{2}
\end{array}\right)
$$

Accordingly, the gauge invariant Yukawa couplings are given by

$$
\begin{aligned}
& L_{L Q}=k_{i j} \bar{Q}_{i} \Phi_{7 / 6} \ell_{R j}+\tilde{k}_{i j} \bar{L}_{i} \tilde{\Phi}_{7 / 6} u_{R j}+y_{i j} \bar{Q}_{i}^{c} i \sigma_{2} \Delta_{1 / 3} L_{j}+h . c .
\end{aligned}
$$

Phenomenological analysis:

Radiative lepton flavor violating processes

* Current limits from $\ell_{i} \rightarrow \ell_{j} \gamma$ decays

Process	(i, j)	Experimental bounds $(90 \% \mathrm{CL})$
$\mu^{-} \rightarrow e^{-} \gamma$	$(2,1)$	$\mathrm{BR}(\mu \rightarrow e \gamma)<5.7 \times 10^{-13}$
$\tau^{-} \rightarrow e^{-} \gamma$	$(3,1)$	$\mathrm{BR}(\tau \rightarrow e \gamma)<3.3 \times 10^{-8}$
$\tau^{-} \rightarrow \mu^{-} \gamma$	$(3,2)$	$\operatorname{BR}(\tau \rightarrow \mu \gamma)<4.4 \times 10^{-8}$

* The effective interactions for $\ell_{i} \rightarrow \ell_{j} \gamma$

$$
\mathcal{L}_{\ell_{i} \rightarrow \ell_{j} \gamma}=\frac{e}{2} \bar{\ell}_{j} \sigma_{\mu \nu}\left[\left(c_{L}\right)_{j i} P_{L}+\left(c_{R}\right)_{j i} P_{R}\right] \ell_{i} F^{\mu \nu}
$$

* The Wilson coefficient of $\left(c_{R}\right)_{j i}$ is given by

$$
\begin{aligned}
& \text { enhanced factor } \\
& \qquad \begin{aligned}
\left(c_{R}\right)_{j i} & \approx \frac{\left(m_{t}\right.}{(4 \pi)}{ }_{\left(k^{\dagger}\right)_{i 3} \tilde{k}_{3 j}}^{\text {relevant couplings }} \\
\Delta\left(m_{1}, m_{2}\right) & =x m_{1}^{2}+(y+z]\left(\frac{5}{\Delta\left(m_{t}, m_{\Phi}\right)}-\frac{2(1-x)}{\Delta\left(m_{\Phi}, m_{t}\right)}\right), \\
\int[d X] & =\int d x d y d z \delta(1-x-y-z),
\end{aligned}
\end{aligned}
$$

$\left(c_{L}\right)_{j i}$ can be obtained from $\left(c_{R}\right)_{j i}$ by exchanging $k_{a b}$ and $\tilde{k}_{a b}$
I. Muon anomalous magnetic dipole moment, muon g-2, can be related to $\left(c_{R}\right)_{\mu \mu}$ and $\left(c_{L}\right)_{\mu \mu}$ as

$$
\Delta a_{\mu} \simeq-\frac{m_{\mu}}{2}\left(c_{L}+c_{R}\right)_{\mu \mu}
$$

$\square b \rightarrow s \ell^{+} \ell^{-}$

* from $\phi^{2 / 3}$

$(S-P) \times(S+P) \xrightarrow{\text { Fierz T. }}(\mathrm{V}-\mathrm{A}) \times(V+A)$
$H_{\mathrm{eff}}^{1}=\frac{k_{b \ell} k_{s \ell}}{2 m_{\Phi}^{2}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} P_{R} \ell\right)$
* from $\delta^{4 / 3}$

$(S-P) \times(S+P) \xrightarrow{\text { Fierz T. }}(\mathrm{V}-\mathrm{A}) \times(V+A)^{C}$ $=-(V-A) \times(V-A)$

$$
H_{\mathrm{eff}}^{2}=-\frac{y_{b \ell} y_{s \ell}}{2 m_{\Delta}^{2}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\ell} \gamma_{\mu} P_{L} \ell\right)
$$

* The effective Hamiltonian for $b \rightarrow s \ell \ell$

$$
\begin{aligned}
& \mathcal{H}=\frac{G_{F} \alpha V_{t b} V_{t s}^{*}}{\sqrt{2} \pi}\left[H_{1 \mu} \ell \gamma_{\mu} \ell+H_{2 \mu} \bar{\ell} \gamma_{\mu} \gamma_{5} \ell\right] \\
& H_{1 \mu}=C_{9}^{\ell} \bar{s} \gamma_{\mu} P_{L} b-\frac{2 m_{b}}{q^{2}} C_{7} \bar{s} i \sigma_{\mu \nu} q^{\nu} P_{R} b, \\
& H_{2 \mu}=C_{10}^{\ell} \bar{s} \gamma_{\mu} P_{L} b . \\
& \\
& C_{9}^{\ell}=C_{9}^{\mathrm{SM}}+C_{9}^{L Q, \ell} \\
& C_{10}^{\ell}=C_{10}^{\mathrm{SM}}+C_{10}^{L Q, \ell}
\end{aligned}
$$

$$
\begin{aligned}
C_{9}^{L Q, \ell} & =-\frac{1}{c_{\mathrm{SM}}}\left(\frac{k_{b \ell} k_{s \ell}}{4 m_{\Phi}^{2}}-\frac{y_{b \ell} y_{s \ell}}{4 m_{\Delta}^{2}}\right) \\
C_{10}^{L Q, \ell} & =\frac{1}{c_{\mathrm{SM}}}\left(\frac{k_{b \ell} k_{s \ell}}{4 m_{\Phi}^{2}}+\frac{y_{b \ell} y_{s \ell}}{4 m_{\Delta}^{2}}\right)
\end{aligned}
$$

* enhancing $C_{9}^{L Q, \ell}$ and decreasing $\mathrm{C}_{10}^{\mathrm{LQ} \ell}$ can escape the constraint from $B_{s} \rightarrow \mu^{+} \mu^{-}$
$\square \rightarrow c \ell^{-} v$
* from $\phi^{2 / 3}$

$$
\begin{aligned}
& b_{L} \longrightarrow \underset{\substack{\mid \phi^{2 / 3}}}{ } \ell_{R} \\
& c_{R} \longleftarrow \underset{\text { Fierz } T .}{\longleftarrow} \nu_{L} \\
& (S-P) \times(S-P) \xrightarrow{\text { Fierz T. }}(\mathrm{S}-\mathrm{P}) \times(S-P) \\
& \mathcal{H}=\frac{k_{3 j} \tilde{k}_{\ell 2}^{*}}{2 m_{\Phi}^{2}}\left(\bar{c} P_{L} b \bar{\ell}_{j} P_{L} \nu_{\ell}\right. \\
& \left.+\frac{1}{4} \bar{c} \sigma^{\mu \nu} P_{L} b \bar{\ell}_{j} \sigma_{\mu \nu} P_{L} \nu_{\ell}\right)+h . c .
\end{aligned}
$$

* from $\delta^{1 / 3}$

$\begin{aligned} &(S-P) \times(S+P) \xrightarrow{\text { Fierz } T .}(\mathrm{V}-\mathrm{A}) \times(V+A)^{C} \\ &=-(V-A) \times(V-A)\end{aligned}$
$\mathcal{H}=-\frac{y_{3 \ell} y_{2 j}^{*}}{4 m_{\Delta}^{2}}\left(\bar{c} \gamma_{\mu} P_{L} b \bar{\ell}_{j} \gamma^{\mu} P_{L} \nu_{\ell}\right)+$ h.c.
* $B \rightarrow D^{(*)}$ form factors

Melikhov \& Stech, PRD62 (00)

$$
\begin{aligned}
<P\left(M_{2}, p_{2}\right)\left|V_{\mu}(0)\right| P\left(M_{1}, p_{1}\right)> & =f_{+}\left(q^{2}\right) P_{\mu}+f_{-}\left(q^{2}\right) q_{\mu}, \quad \varepsilon_{0123}=+1 \\
<V\left(M_{2}, p_{2}, \epsilon\right)\left|V_{\mu}(0)\right| P\left(M_{1}, p_{1}\right)> & =2 g\left(q^{2}\right) \epsilon_{\mu \nu \alpha \beta} \epsilon^{* \nu} p_{1}^{\alpha} p_{2}^{\beta}, \\
<V\left(M_{2}, p_{2}, \epsilon\right)\left|A_{\mu}(0)\right| P\left(M_{1}, p_{1}\right)> & =i \epsilon^{* \alpha}\left[f\left(q^{2}\right) g_{\mu \alpha}+a_{+}\left(q^{2}\right) p_{1 \alpha} P_{\mu}+a_{-}\left(q^{2}\right) p_{1 \alpha} q_{\mu}\right], \\
<P\left(M_{2}, p_{2}\right)\left|T_{\mu \nu}(0)\right| P\left(M_{1}, p_{1}\right)> & =-2 i s\left(q^{2}\right)\left(p_{1 \mu} p_{2 \nu}-p_{1}{ }_{n u} p_{2 \mu}\right) \\
<V\left(M_{2}, p_{2}, \epsilon\right)\left|T_{\mu \nu}(0)\right| P\left(M_{1}, p_{1}\right)> & =i \epsilon^{* \alpha}\left[g_{+}\left(q^{2}\right) \epsilon_{\mu \nu \alpha \beta} P^{\beta}+g_{-}\left(q^{2}\right) \epsilon_{\mu \nu \alpha \beta} q^{\beta}+g_{0}\left(q^{2}\right) p_{1 \alpha} \epsilon_{\mu \nu \beta \gamma} p_{1}^{\beta} p_{2}^{\gamma}\right],
\end{aligned}
$$

Numerical analysis:

To explain the excess of angular observable P_{5}^{\prime} in $B \rightarrow K^{*} \ell \ell$, we require $C_{9}^{L Q, \mu} \sim-1$, which is based on the global fitting,

- $B_{S} \rightarrow \mu^{+} \mu^{-}$constraint, $B R\left(B_{S} \rightarrow \mu^{+} \mu^{-}\right)=\left(2.8_{-0.6}^{+0.7}\right) \times 10^{-9} \mathrm{LHCb}-\mathrm{CMS}$

$$
\frac{\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)}{\operatorname{BR}\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)^{\mathrm{SM}}}=\left|1-0.24 C_{10}^{L Q, \mu}\right|^{2} \quad 0.21<C_{10}^{L Q, \mu}<0.79
$$

Hiller, Schmaltz, PRD90(14)
$\square R_{K}$ is not sensitive to the $B \rightarrow K$ form factors, we use the result

$$
0.7 \leq \operatorname{Re}\left(X^{e}-X^{\mu}\right) \leq 1.5, \quad X^{\ell}=C_{9}^{L Q, \ell}-C_{10}^{L Q, \ell}
$$

Constraints from $\ell_{i} \rightarrow \ell_{j} \gamma$
\square The ranges of relevant parameters are set to be

$$
\begin{aligned}
& m_{L Q} \in[700,1500] \mathrm{GeV},\left\{k_{22}, \tilde{k}_{22}, y_{22}\right\} \in[-0.1,0.1] \\
& \left\{k_{33}, \tilde{k}_{33}, y_{33}\right\} \in[-0.01,0.01], \quad\left\{k_{23}, \tilde{k}_{23}, y_{23}\right\} \in[-0.1,0.1] \\
& k_{32} \in \operatorname{sign}\left(k_{22}\right)[0,0.5], \quad \tilde{k}_{32} \in[-0.5,0.5], \quad y_{32} \in-\operatorname{sign}\left(y_{22}\right)[0,0.5]
\end{aligned}
$$

\square With the setting ranges of parameters, we scan the relevant parameter spaces

* correlation between $C_{9}^{L Q, \mu}$ and $C_{10}^{L Q, \mu}$ is given below figure (a)

* correlation between Δa_{μ} and $C_{9}^{L Q, \mu}$ is given below figure (b)
* correlation between $\mathrm{X}^{\ell}=C_{9}^{L Q, \ell}-C_{10}^{L Q, \ell}$ and $C_{9}^{L Q, \mu}$ is given below figure

* The SM Higgs can couple to the LQs through the scalar potential, the signal strength parameter $\mu^{\gamma \gamma}$ of Higgs to diphoton will be modified; By taking proper values of parameter, the contributions of LQ can fit the current LHC data

$$
\mu_{i}^{f}=\frac{\sigma(p p \rightarrow h)}{\sigma(p p \rightarrow h)_{\mathrm{SM}}} \cdot \frac{\mathrm{BR}(h \rightarrow f)}{\mathrm{BR}(h \rightarrow f)_{\mathrm{SM}}} \equiv \mu_{i} \cdot \mu_{f}
$$

Summary:

Lepton non-universality is challenged in semileptonic B decays
\square We study the resolution with leptoquarks, the excesses in $B \rightarrow$ $K^{(*)} \ell^{+} \ell^{-}$can be explained when the constraints from radiative leptons and $B_{s} \rightarrow \mu^{+} \mu^{-}$are included
\square The detailed analysis on R_{D} and $R_{D^{*}}$ problem is in progress; More constraints from rare K, D and B decays need to further check

