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Motivation	to	search	for	new	physics:	

q Some	unsolved	problems,	such	as	neutrino	mass,	dark	matter,	matter-antimatter	

asymmetry,	cannot	be	explained	in	the	SM,	the	SM	is	an	effective	theory	at	the	

electroweak	scale		

q It	will	be	exciting	if	any	excesses	from	the	SM	predictions	are	found	in	experiments

q Some	data	with	more	than	3𝜎 deviations	from	the	SM	predictions	were	shown	

over	the	past	few	years:		for	instance,

Ø muon	anomalous	magnetic	dipole	moment,	muon	g-2

Δ𝑎+ = 𝑎+
-./ − 𝑎+12 = 28.8 ± 8.0 ×10':;		𝑃𝐷𝐺



The presence of a K+⇡� system in an S-
wave configuration, due to a non-resonant con-
tribution or to feed-down from K+⇡� scalar
resonances, results in additional terms in the
di↵erential angular distribution. Denoting the
right-hand side of Eq. 1 by WP, the di↵erential
decay rate takes the form

(1� FS)WP +
9

32⇡
(WS +WSP) , (7)

where

WS =
2

3
FS sin
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`

(8)

and WSP is given by
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The factor FS is the fraction of the S-wave
component in the K⇤0 mass window, and WSP

contains all the interference terms, A(i)
S , of the

S-wave with the K⇤0 transversity amplitudes
as defined in Ref. [26]. In Ref. [7], FS was mea-
sured to be less than 0.07 at 68% confidence
level. The maximum value that the quanti-
ties A(i)

S can assume is a function of FS and
FL [11]. The S-wave contribution is neglected
in the fit to data, but its e↵ect is evaluated
and assigned as a systematic uncertainty us-
ing pseudo-experiments. A large number of
pseudo-experiments with FS = 0.07 and with
the interference terms set to their maximum
allowed values are generated. All other param-
eters, including the angular observables, are set
to their measured values in data. The pseudo-
experiments are fitted ignoring S-wave and in-
terference contributions. The corresponding
bias in the measurement of the angular observ-
ables is assigned as a systematic uncertainty.
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Figure 1: Measured values of P 0
4 and P 0

5 (black
points) compared with SM predictions from
Ref. [11] (blue bands).

The results of the angular fits to the data are
presented in Table 1. The statistical uncertain-
ties are determined using the Feldman-Cousins
method [27]. The systematic uncertainty takes
into account the limited knowledge of the angu-
lar acceptance, uncertainties in the signal and
background invariant mass models, the angu-
lar model for the background, and the impact
of a possible S-wave amplitude. E↵ects due
to B0/B0 production asymmetry have been
considered and found negligibly small. The
comparison between the measurements and the
theoretical predictions from Ref. [11] are shown
in Fig. 1 for the observables P 0

4 and P 0
5. The

observables P 0
6 and P 0

8 (as well as S7 and S8)
are suppressed by the small size of the strong
phase di↵erence between the decay amplitudes,
and therefore are expected to be close to zero
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3.7𝜎 deviations,	LHCb,	PRL111(13)
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Figure 11: The optimised angular observables in bins of q2, determined from a moment analysis
of the data. The shaded boxes show the SM predictions taken from Ref. [14].
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Δ𝑅𝑒𝐶E = −1.04 ± 0.25 to	fit	the	data,
3.4𝜎deviations,	LHCb,	JHEP1602(16)

Ø Angular	observable	𝑃HI of	𝐵 → 𝐾∗𝜇&𝜇':

where Γh is the width of the Higgs. Due to BR(h → µτ) being less than 1%, we use

Γh ≈ ΓSM
h ≈ 4.2 MeV in our numerical estimations.

Next, we discuss the decays for b → sℓ+ℓ−. In order to include the effects of lepton

non-unversality, we write the effective Hamiltonian as:

H =
GFαVtbV ∗

ts√
2π

[

H1µL
µ +H2µL

5µ
]

, (21)

where the leptonic currents are denoted by L(5)
µ = ℓγµ(γ5)ℓ; and the related hadronic currents

are defined as:

H1µ = Cℓ
9s̄γµPL −

2mb

q2
C7s̄iσµνq

νPRb ,

H2µ = Cℓ
10s̄γµPLb . (22)

Here, the Wilson coefficients are read as: Cℓ
9(10) = CSM

9(10)+CNP,ℓ
9(10) and C7 = CSM

7 . The detailed

angular distribution for B → (Kπ)K∗ℓ+ℓ− can be found in Refs. [2, 89–92]. Following the

notations in Ref. [2], the angular observable P ′
5 is defined by:

P ′
5 =

J5√
−J2cJ2s

, J5 =
√
2Re(AL

0A
L∗
⊥ ) ,

J2c = −|AL
0 |2 , J2s =

1

4

(

|AL
∥ |2 + |AL

⊥|2
)

, (23)

where AL
0,∥,⊥ are related to the B → K∗ transition form factors and the Wilson coefficients

of Cℓ
9,10 and C7. Their explicit expressions can be found in Ref. [2]. In this study, we do not

directly investigate the angular analysis of B → K∗ℓ+ℓ−; instead, we refer to the results,

which were done by using the global analysis to get the best-fit value of CNP
9 ≈ −1.09 for

the new physics contributions [13]. Thus, we just derive the Wilson coefficients of Cℓ
9 and

Cℓ
10 from the LQ contributions.

With the Yukawa couplings in Eq. (4), the effective Hamiltonian for b → sℓ+ℓ− mediated

by φ2/3 and δ4/3 can be respectively found as:

H1
eff =

kbℓksℓ
2m2

Φ

(s̄γµPLb)(ℓ̄γµPRℓ) ,

H2
eff = −

ybℓysℓ
2m2

∆

(s̄γµPLb)(ℓ̄γµPLℓ) . (24)

We can decompose the Eq. (24) in terms of the effective operators O9 and O10, defined as

O9(10) = s̄γµPLb ℓ̄γµ(γ5)ℓ. The associated Wilson coefficients of O9,10 from the LQs then are

9

• The “flipped-sign solution” for C7 is in general disfavoured by present data at the

95.5% confidence level depending on the NP scenario considered. The isospin asym-

metry in B ! K⇤� plays an important role (independent of Wilson coe�cients

other than C(0)
7 ), as well as the forward-backward asymmetry in B ! K⇤``. This

confirms the result of Refs. [6, 7].

• We show explicitly the strong impact of the di↵erent computations available in the

literature for the soft form factors on the theoretical uncertainties for observables like

A
FB

, F
L

and S3, and the robustness of the clean observables P
i

. While the impact

on the theoretical error in F
L

is evident, the problem for observables like S3 is more

subtle. In the case of S3 the theoretical uncertainty in the SM is protected by its tiny

central value, but away from the SM point the impact can be substantial, preventing

this observable from discriminating NP scenarios. None of these problems a↵ect the

clean observables P
i

or Ai

T

.

2 Integrated observables in q2-bins

The di↵erential decay rate of the process B̄
d

! K̄⇤(! K⇡)`+`� can be written as:

d4�

dq2 dcos ✓
K

dcos ✓
l

d�
=

9

32⇡


J1s sin

2 ✓
K

+ J1c cos
2 ✓

K

+ (J2s sin
2 ✓

K

+ J2c cos
2 ✓

K

) cos 2✓
l

+J3 sin
2 ✓

K

sin2 ✓
l

cos 2�+ J4 sin 2✓K sin 2✓
l

cos�+ J5 sin 2✓K sin ✓
l

cos�

+(J6s sin
2 ✓

K

+ J6c cos
2 ✓

K

) cos ✓
l

+ J7 sin 2✓K sin ✓
l

sin�+ J8 sin 2✓K sin 2✓
l

sin�

+J9 sin
2 ✓

K

sin2 ✓
l

sin 2�

�
, (2)

where the kinematical variables �, ✓
`

, ✓
K

, q2 are defined as in Refs. [35, 26, 32]. The decay

rate �̄ of the CP-conjugated process B
d

! K⇤(! K⇡)`+`� is obtained from Eq. (2) by

replacing J1,2,3,4,7 ! J̄1,2,3,4,7 and J5,6,8,9 ! �J̄5,6,8,9, where J̄ is equal to J with all weak

phases conjugated. This corresponds to the same definition of ✓
`

for both B and B̄ (see

for example [36, 26]). In this paper we assume that all the observables are CP-averaged,

and so are always functions of J
i

+ J̄
i

. Therefore, J
i

! J
i

+ J̄
i

and � ! � + �̄ should

be understood in all the formulas below, and in particular all the observables O(J) are

assumed to be O(J + J̄).

In order to cope with limited statistics, one can write down integrated distributions,

such as the uniangular distributions, which depend on a subset of coe�cients J
i

. This is

the way observables such as F
L

, AFB or A(2)
T

have been measured traditionally. A more
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Ø lepton	non-universal	couplings,	𝑅K, 𝑅K∗, 𝑎𝑛𝑑	𝑅O

where l = e or µ. In Table 1, we collect all the relevant experimental results related to the
B ! D

(⇤)
`⌫` decay processes.

List of Observables

Observable
Experimental Results

SM Prediction
Experiment Measured value

RD

Belle 0.375 ± 0.064 ± 0.026 [18] 0.299 ± 0.011 [19]

BaBar 0.440 ± 0.058 ± 0.042 [20,21] 0.300 ± 0.008 [22]

HFAG average 0.397 ± 0.040 ± 0.028 [17]
0.299± 0.003 [23]

0.300± 0.011

RD⇤

Belle 0.293 ± 0.038 ± 0.015 [18]

0.252 ± 0.003 [24]

Belle 0.302 ± 0.030 ± 0.011 [25]

BaBar 0.332 ± 0.024 ± 0.018 [20,21]

LHCb 0.336 ± 0.027 ± 0.030 [26]

HFAG average 0.316 ± 0.016 ± 0.010 [17] 0.254± 0.004

Belle 0.276 ± 0.034 +0.029
�0.026 [27]

Our average 0.310± 0.017

B �
B ! D⌧ ⌫̄⌧

�
BaBar 1.02 ± 0.13 ± 0.11 % [20] 0.633± 0.014%

B �
B ! D

⇤
⌧ ⌫̄⌧

�
BaBar 1.76 ± 0.13 ± 0.12 % [20] 1.28± 0.09 %

B �
B ! Dl⌫̄l

�
HFAG average 2.13 ± 0.03 ± 0.09 % [17] 2.11+0.12

�0.10 %

B �
B ! D

⇤
l⌫̄l

�
HFAG average 4.93 ± 0.01 ± 0.11 % [17] 5.04+0.44

�0.42%

P⌧

�
B ! D⌧ ⌫̄⌧

� 0.325± 0.009 [28]

0.325± 0.012

P⌧

�
B ! D

⇤
⌧ ⌫̄⌧

�
Belle �0.44 ± 0.47 +0.20

�0.17 [27]
�0.497± 0.013 [27, 29]

�0.497± 0.008

AD
FB �0.360+0.002

�0.001

AD⇤
FB 0.064± 0.014

Table 1: The relevant observables, their experimental measurements and the SM predictions
are shown. While computing the branching ratios, we have used Vcb = 0.04. As HFAG
has not yet included the latest Belle measurement of RD⇤ in their global average, we have
taken a naive weighted average of the latest Belle result and the average given by HFAG.
However, since the recent Belle result has a large uncertainty, it does not a↵ect the previous
world average in any significant way. The values given in boldface are our results for the SM
predictions. Note that, for the B ! D

⇤
`⌫̄` SM predictions, the uncertainties correspond to

2� uncertainties in the form factor parameters, see section 5 for more details.
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RK =
B(B! Kµ+µ�)
B(B! Ke+e�)

�����
exp

q22[1,6] GeV
= 0.745+0.090

�0.074 ± 0.036 .

(1)

As we will see, this can be done in a completely flavor-
save manner, due to the possibility of implementing a
very economical flavor symmetry, which avoids the ap-
pearance of new sources of flavor-changing neutral cur-
rents (FCNC) to very good approximation. Since the
lepton sector features a sizable degree of compositeness
and the RH lepton unification requires the presence of
non-minimal representations ofG, it will provide a para-
metrically enhanced correction to the Higgs mass, such
that the need for ultra-light top partners is weakened
considerably, linking the mass of the latter with the size
of the neutrino masses.

2. Setup

Let us consider the so-called minimal composite
Higgs model (MCHM), where the global symmetry
of the strong sector G = S O(5) is broken by the
strong dynamics to H = S O(4), delivering four Gold-
stone bosons that will be identified with the Higgs dou-
blet. We consider the minimal custodial embedding
of the SM lepton sector including three RH fermion
triplets with zero hypercharge, ⌃`R, with ` = e, µ, ⌧. If
these new degrees of freedom have Majorana masses
of order O(MGUT), the observed tiny neutrino masses
can be explained with O(1) Yukawa couplings via the
(type-III) seesaw mechanism. In the framework of the
MCHM, or its five dimensional (5D) holographic dual
[13, 14, 15, 16], this is realized by embedding every
generation of RH leptons in a symmetric representation
(14) of S O(5), whereas every left-handed (LH) doublet
is embedded in a fundamental representation (5) of G.
In terms of the di↵erent 5D bulk fields transforming un-
der S O(5)⇥U(1)X , such embedding of the lepton sector
reads ⇣`1 ⇠ 5�1

and ⇣`2 ⇠ 14�1, for ` = e, µ, ⌧, 1

⇣`1 = `
0
1[�,+] �

 
⌫`1[+,+] ˜̀1[�,+]
`1[+,+] Ỹ`1[�,+]

!
,

⇣`2 = `
0
2[�,�] �

 
⌫`2[+,�] ˜̀2[+,�]
`2[+,�] Ỹ`2[+,�]

!
(2)

�

0
BBBBBBBB@

�̂`2[�,�] ⌫`002 [+,�] `0002 [+,�]
⌫̂`2[�,�] `002 [+,�] Y`0002 [+,�]
ˆ̀2[�,�] Y`002 [+,�] ⇥`0002 [+,�]

1
CCCCCCCCA ,

1For simplicity, we will be rather schematic in the description of
the 5D setup. We thus refer the reader to Ref. [8] for further details.

where we have explicitly shown the decomposition un-
der S U(2)L⇥S U(2)R � S O(4) = H (with the bidoublet
being represented by a 2⇥2 matrix on which the S U(2)L
rotation acts vertically and the S U(2)R one horizon-
tally) and the signs in square brackets denote the bound-
ary conditions at the UV and IR branes. A Dirichlet
boundary condition for the RH/LH chirality is denoted
by [+/�], with LH/RH zero modes being present for
fields with [+,+]/[�,�] boundary conditions. Finally,
since the lepton sector will produce an additional non-
negligible contribution to the Higgs potential, we can
consider for the quark sector the previously disregarded
minimal model consisting of a fully composite tR and a
LH doublet q3

L embedded in a 5 of G. More specifically,
we consider ⇠i1 ⇠ 52/3, ⇠i2 ⇠ 12/3, ⇠i3 ⇠ 5�1/3, ⇠i4 ⇠ 1�1/3,
i = 1, 2, 3, or

⇠i1 =

 
⇤̃i[�,+] ui

1[+,+]
ũi[�,+] di

1[+,+]

!
� ui0

1 [�,+],

⇠i2[�,�], (3)

⇠i3 =

 
ui

3[�,+] d̃i[�,+]
di

3[�,+] ⌅̃i[�,+]

!
� di0

3 [�,+],

⇠i4[�,�].

This minimal realization of composite leptons natu-
rally allows for a very strong flavor protection, requiring
any lepton flavor violating (LFV) process to be medi-
ated by extremely suppressed neutrino-mass insertions
and leading in particular to the absence of dangerous
FCNCs in the lepton sector to excellent approximation.
To this end, we promote the accidental S U(3)1⇥S U(3)2
flavor symmetry of the lepton sector in the decompact-
ified or conformal limit (arising from the arbitrary ro-
tation of ⇠1 and ⇠2 in the family space) to a 5D gauge
group only broken at the UV brane (i.e., by the elemen-
tary sector) and the vacuum expectation value (vev) of
some non-dynamical fieldY [17, 18]. The bulk fields in
the lepton sector will thus transform as ⇣1 ⇠ (3, 1) and
⇣2 ⇠ (1, 3), whereas Y ⇠ (3, ¯3). Therefore, the corre-
sponding bulk masses will be given by 2

c1 = ⌘11 + ⇢1YY† + . . . , c2 = ⌘21 + ⇢2Y†Y + . . . ,
(4)

whereas the IR brane masses will read

a4
h
!S

⇣
⇣̄(1,1)

1L Y⇣
(1,1)
2R

⌘
+ !B(⇣̄(2,2)

1L Y⇣
(2,2)
2R )

i����
R0
+ h.c., (5)

2The . . . stand for subleading contributions YY†YY†,
Y†YY†Y, . . . , which do not add additional flavor structure since
they can all be made diagonal by (8).

𝑅K(∗) =
𝐵𝑅 𝐵 → 𝐷(∗)𝜏𝜈
𝐵𝑅 𝐵 → 𝐷(∗)ℓ𝜈

2.6𝜎,	LHCb,	PRL113(14)

q Take		these	excesses	seriously,		we	explain	the	anomalies		with		leptoquarks



Extension	of	the	SM	with	leptoquarks (LQs):	

Properties	of	LQ:	

(a) scalar	(	our	case)	or	vector

(b) simultaneously	couple	to	the	SM	quarks	and	leptons

(c) muon	g-2	is	from	one-loop;	𝑏 → 𝑠	ℓ&ℓ'	and	b → 𝑐	ℓ'𝜈 are	from	tree

µ µ

L R

LQ

R Lmq LQ

b ℓ

ℓs

LQ

ℓ(ν)

ν(ℓ)c

b

Sketched Feynman diagrams

γ



q To	get	the	top-quark	enhancement	for	muon	g-2,	we	consider	a	scalar	

doublet	LQ;	to	smear	the	constraints	from	𝐵\ → 𝜇&𝜇',	we	also	consider	a	

scalar	triplet	LQ	

q Charge	assignment	(	𝑄 = 𝐼_ + 𝑌):

For	doublet	LQ:

𝑄bc	Φe	ℓf ∶ −
1
6 + 𝑌 − 1 = 0, 𝑌 =

7
6

ℓbc	Φ′e	𝑢f	 𝑑f :
1
2 + 𝑌 +

2
3 −

1
3 = 0, 𝑌 = −

7
6 −

1
6

If	we	take	Φe
I = 𝑖𝜎lΦe

∗ , the	LQ	can	couple	to	𝑡c and	𝑡f;	hence,		the	representaion	for	

doublet	LQ	is	:	

Φn/p =
𝜙
H
_

𝜙
l
_



For	triplet	LQ:

𝑄brci𝜏lΔe	ℓc = 𝑄ct𝐶	𝑖𝜎l	Δeℓc:		
1
6 + 𝑌 −

1
2 = 0, 𝑌 =

1
3

the	representaion	for	doublet	LQ	is	:	

Δ:/_ =
𝛿:/_/ 2� 𝛿w/_

𝛿'l/_ 𝛿:/_/ 2�

q Accordingly,	the	gauge	invariant	Yukawa	couplings	are	given	by	

LLQ = kijQ̄i�7/6`Rj + k̃ijL̄i�̃7/6uRj + yijQ̄
c
i i�2�1/3Lj + h.c.

couplings as real numbers. We use the representations of the LQs as:

Φ7/6 =

⎛

⎝

φ5/3

φ2/3

⎞

⎠ , ∆1/3 =

⎛

⎝

δ1/3/
√
2 δ4/3

δ−2/3 −δ1/3/
√
2

⎞

⎠ , (3)

where the superscripts are the electric charges of the particles. The interactions in Eq. (2)

are then expressed as:

LLQ =kij
[

ūLi ℓRjφ
5/3 + d̄Li ℓRjφ

2/3
]

+ k̃ij
[

ℓ̄Li uRjφ
−5/3 − ν̄Li uRjφ

−2/3
]

+ yij

[

ūc
Li νLjδ

−2/3 −
1√
2
ūc
Li ℓLjδ

1/3 −
1√
2
d̄cLi νLjδ

1/3 − d̄cLi ℓLjδ
4/3

]

+ h.c. (4)

Since the LQs are colored scalar bosons, they can couple to the SM Higgs H via the scalar

potential. In order to get the Higgs couplings to the LQs, we write the gauge-invariant scalar

potential as:

V = µ2H†H + λ(H†H)2 +M2
Φ

(

Φ†
7/6Φ7/6

)

+M2
∆Tr

(

∆†
1/3∆1/3

)

+ λΦ

(

Φ†
7/6Φ7/6

)2

+ λ∆

[

Tr
(

∆†
1/3∆1/3

)]2
+ λ′

∆Tr

(

[

∆†
1/3∆1/3

]2
)

+ λHΦ(H
†H)

(

Φ†
7/6Φ7/6

)

+ λH∆(H
†H)Tr

(

∆†
1/3∆1/3

)

+ λΦ∆

(

Φ†
7/6Φ7/6

)

Tr
(

∆†
1/3∆1/3

)

. (5)

As usual, we adopt the representations of the Higgs doublet H as:

H =

⎛

⎝

G+

1√
2
(v + φ+ iG0)

⎞

⎠ , (6)

where G+ and G0 are the Goldstone bosons; φ is the SM Higgs field, and v is the vacuum

expectation value (VEV) of H . It is known that the VEV of scalar field is dictated by the

scalar potential.

III. PHENOMENOLOGICAL ANALYSIS

Based on the introduced new interactions, in this section, we study the implications of

the Higgs diphoton decay, ℓi → ℓjγ, the muon g − 2, h → τµ, B → K∗ℓ+ℓ−, and RK . Since

each of these processes has its own unique characteristics, we discuss these phenomena one
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Phenomenological	analysis:	

q Radiative	lepton	flavor	violating	processes	

v Current	limits	from	ℓz → ℓ{𝛾 decays

v The	effective	interactions	for	ℓz → ℓ{𝛾 ℓL ℓR
tR

tL

radiative LFV processes for ℓi → ℓjγ. With the couplings in Eq. (4), the LQ-loop induced

decay amplitude for ℓi → ℓjγ can be written as:

Lℓi→ℓjγ =
e

2
ℓ̄jσµν [(cL)jiPL + (cR)jiPR] ℓiF

µν , (13)

where the coefficient (cR)ji is expressed as:

(cR)ji ≈
mt

(4π)2
(k†)i3k̃3j

∫

d[X ]

(

5

∆(mt, mΦ)
−

2(1− x)

∆(mΦ, mt)

)

,

∆(m1, m2) = xm2
1 + (y + z)m2

2 ,
∫

[dX ] =

∫

dxdydzδ(1− x− y − z) , (14)

(cL)ji can be obtained from (cR)ji by exchanging kab and k̃ab. In order to balance the

chirality of the leptons, it is found that the contributions from k†
iqkqj, k̃

†
iqk̃qj, y

†
iqkqj, and

y†iqyqj are suppressed by the lepton masses. Since the LQ φ5/3 can couple to left-handed and

right-handed up-type quarks, the chirality flip by the mass insertion in the propagator of

the up-type quark can lead to freeing of the lepton masses in the Feynman diagrams, which

are associated with kqi and k̃qi. In addition, the top-quark is much heavier than the u- and

c-quarks; therefore, we only present the top-quark contribution in (cR)ji. Straightforwardly,

the BR for ℓi → ℓjγ can be expressed as:

BR(ℓi → ℓjγ) =
48π3αηi
G2

Fm
2
ℓi

(

|(cR)ji|2 + |(cL)ji|2
)

, (15)

where ηi ≃ (1, 1/5) for i = (µ, τ) and the BRs for ℓi → ℓj ν̄jνi in the SM have been applied.

The current experimental upper limits are shown in Table I. According to Eq. (13), muon

g − 2 can be easily obtained by setting j = i = µ and found as:

∆aµ ≃ −
mµ

2
(cL + cR)µµ. (16)

Process (i, j) Experimental bounds (90% CL)

µ− → e−γ (2, 1) BR(µ → eγ) < 5.7× 10−13

τ− → e−γ (3, 1) BR(τ → eγ) < 3.3× 10−8

τ− → µ−γ (3, 2) BR(τ → µγ) < 4.4× 10−8

TABLE I: Current upper bounds on the BRs for the decays ℓi → ℓjγ [88].
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q 𝑏 → 𝑠	ℓ&ℓ'

v from	𝜙l/_

ℓR

ℓR

bL

sL

φ2/3

𝑆 − 𝑃 × 𝑆 + 𝑃 	
�z���	t.

V − A ×(𝑉 + 𝐴)

where Γh is the width of the Higgs. Due to BR(h → µτ) being less than 1%, we use

Γh ≈ ΓSM
h ≈ 4.2 MeV in our numerical estimations.

Next, we discuss the decays for b → sℓ+ℓ−. In order to include the effects of lepton

non-unversality, we write the effective Hamiltonian as:

H =
GFαVtbV ∗

ts√
2π

[

H1µL
µ +H2µL

5µ
]

, (21)

where the leptonic currents are denoted by L(5)
µ = ℓγµ(γ5)ℓ; and the related hadronic currents

are defined as:

H1µ = Cℓ
9s̄γµPL −

2mb

q2
C7s̄iσµνq

νPRb ,

H2µ = Cℓ
10s̄γµPLb . (22)

Here, the Wilson coefficients are read as: Cℓ
9(10) = CSM

9(10)+CNP,ℓ
9(10) and C7 = CSM

7 . The detailed

angular distribution for B → (Kπ)K∗ℓ+ℓ− can be found in Refs. [2, 89–92]. Following the

notations in Ref. [2], the angular observable P ′
5 is defined by:

P ′
5 =

J5√
−J2cJ2s

, J5 =
√
2Re(AL

0A
L∗
⊥ ) ,

J2c = −|AL
0 |2 , J2s =

1

4

(

|AL
∥ |2 + |AL

⊥|2
)

, (23)

where AL
0,∥,⊥ are related to the B → K∗ transition form factors and the Wilson coefficients

of Cℓ
9,10 and C7. Their explicit expressions can be found in Ref. [2]. In this study, we do not

directly investigate the angular analysis of B → K∗ℓ+ℓ−; instead, we refer to the results,

which were done by using the global analysis to get the best-fit value of CNP
9 ≈ −1.09 for

the new physics contributions [13]. Thus, we just derive the Wilson coefficients of Cℓ
9 and

Cℓ
10 from the LQ contributions.

With the Yukawa couplings in Eq. (4), the effective Hamiltonian for b → sℓ+ℓ− mediated

by φ2/3 and δ4/3 can be respectively found as:

H1
eff =

kbℓksℓ
2m2

Φ

(s̄γµPLb)(ℓ̄γµPRℓ) ,

H2
eff = −

ybℓysℓ
2m2

∆

(s̄γµPLb)(ℓ̄γµPLℓ) . (24)

We can decompose the Eq. (24) in terms of the effective operators O9 and O10, defined as

O9(10) = s̄γµPLb ℓ̄γµ(γ5)ℓ. The associated Wilson coefficients of O9,10 from the LQs then are

9

v from	𝛿w/_

ℓL

ℓL

bL

sL

δ4/3

𝑆 − 𝑃 × 𝑆 + 𝑃 	
�z���	t.

V − A × 𝑉 + 𝐴 �

= − 𝑉 − 𝐴 ×(𝑉 − 𝐴)
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We can decompose the Eq. (24) in terms of the effective operators O9 and O10, defined as
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v The	effective	Hamiltonian	for	𝑏 → 𝑠	ℓℓ

H =
GF↵VtbV

⇤
tsp

2⇡

⇥
H1µ`�µ`+H2µ

¯̀�µ�5`
⇤

C`
9 = CSM

9 + CLQ,`
9

C`
10 = CSM

10 + CLQ,`
10

found as:

CLQ,ℓ
9 = −

1

cSM

(

kbℓksℓ
4m2

Φ

−
ybℓysℓ
4m2

∆

)

,

CLQ,ℓ
10 =

1

cSM

(

kbℓksℓ
4m2

Φ

+
ybℓysℓ
4m2

∆

)

, (25)

where cSM = VtbV ∗
tsαGF/(

√
2π) is a scale factor from the SM effective Hamiltonian. It is

worth mentioning that the interaction CLQ,µ
10 O10 can contribute to Bs → µ+µ−. Since the

experimental data are consistent with the SM prediction, to consider the constraint from

Bs → µ+µ−, we adopt the expression for the BR as [29]:

BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM
=

∣

∣

∣
1− 0.24CLQ,µ

10

∣

∣

∣

2

. (26)

With 1σ errors, the allowed range for CLQ,µ
10 is obtained as CLQ,µ

10 = (0.21, 0.79). We use this

result to constrain the free parameters. Since the RK is insensitive to the B → K transition

form factors [93], in order to study the anomaly of RK , we require that the allowed range

of parameters has to satisfy [29]:

0.7 ≤ Re[Xe −Xµ] ≤ 1.5 , (27)

where Xℓ = CLQ,ℓ
9 − CLQ,ℓ

10 , and the RK data with 1σ errors are used.

Since the parameters in the decays ℓi → ℓjγ, h → µτ , ∆aµ, and B → K(∗)ℓ+ℓ− are

strongly correlated, in the following analysis, we take the current upper limits of BR(ℓi →

ℓjγ) shown in Table I as the inputs and attempt to find the allowed parameter space, such

that the excesses in ∆aµ and B → K(∗)ℓ+ℓ− can be satisfied, and the BR(h → µτ) can be

as large as possible.

From (cR)ji in Eq. (14), the dominant effects on the radiative LFV processes are from

the φ5/3 and the top-quark loop; thus, there is no possible cancellation in any of the decay

amplitudes. With the upper bound of BR(µ → eγ), we see that k†
13k̃32 and k̃†

13k32 have

to be very small. In order to explain the excesses of muon g − 2 and B → K∗µ+µ−, we

set k31 = k̃31 ≈ 0. As a result, BR(h → eµ) is negligible in this model. The related

parameters for τ → (µ, e)γ decays are k31,32k̃33 and k̃31,32k33, respectively. These parameters

simultaneously influence h → (µ, e)τ , muon g − 2, and b → sµ+µ−; therefore we have to

analyze these processes together to get the allowed parameter space.

10
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c�,ℓ	and	decreasing	

C:;
��,ℓ	can	escape	the	constraint	from	
𝐵\ → 𝜇&𝜇'
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q 𝑏 → 𝑐	ℓ'𝜈

v from	𝜙l/_

ℓR

νL

bL

cR

φ2/3

v from	𝛿:/_

𝑆 − 𝑃 × 𝑆 − 𝑃 	
�z���	t.

S − P ×(𝑆 − 𝑃)
:
w
	𝜎+�	𝑃c	×		𝜎+�𝑃c

H =
k3j k̃⇤`2
2m2

�

�
c̄PLb¯̀jPL⌫`

+
1

4
c̄�µ⌫PLb¯̀j�µ⌫PL⌫`

◆
+ h.c.

νℓL

ℓjL

bL

cL

δ1/3

𝑆 − 𝑃 × 𝑆 + 𝑃 	
�z���	t.

V − A × 𝑉 + 𝐴 �

= − 𝑉 − 𝐴 ×(𝑉 − 𝐴)

H = �y3`y⇤2j
4m2

�

�
c̄�µPLb ¯̀j�

µPL⌫`
�
+ h.c.

v 𝐵 → 𝐷(∗) form	factors	

< P (M2, p2)|Vµ(0)|P (M1, p1) > = f+(q2)Pµ + f−(q2)qµ,

< V (M2, p2, ϵ)|Vµ(0)|P (M1, p1) > = 2g(q2)ϵµναβϵ∗ν pα
1 pβ

2 ,

< V (M2, p2, ϵ)|Aµ(0)|P (M1, p1) > = iϵ∗α [ f(q2)gµα + a+(q2)p1αPµ + a−(q2)p1αqµ ],

< P (M2, p2)|Tµν(0)|P (M1, p1) > = −2i s(q2) (p1µp2ν − p1 nup2µ),

< V (M2, p2, ϵ)|Tµν(0)|P (M1, p1) > = iϵ∗α [ g+(q2)ϵµναβP β + g−(q2)ϵµναβqβ + g0(q
2)p1αϵµνβγpβ

1pγ
2 ], (1)

where q = p1 − p2, P = p1 + p2. The following notations are used: γ5 = iγ0γ1γ2γ3, σµν = i
2 [γµ, γν ], ϵ0123 = −1,

γ5σµν = − i
2ϵµναβσαβ , and Sp(γ5γµγνγαγβ) = 4iϵµναβ. We study the form factors within the dispersion formulation

of the quark model [18]. We start by considering the region q2 < 0 where the form factors may be represented as
double spectral representations in the invariant masses of the initial and final qq̄ pairs. The form factors corresponding
to the decay region q2 > 0 are then derived by performing the analytical continuation.

The transition of the initial meson q(m2)q̄(m3) with the mass M1 to the final meson q(m1)q̄(m3) with the mass M2

induced by the quark transition q(m2) → q(m1) through the current q̄(m1)Oµq(m2) is described by the diagram of
Fig.1. For constructing the double spectral representation we must consider a double–cut graph where all intermediate
particles go on mass shell but the initial and final mesons have the off–shell momenta p̃1 and and p̃2 such that p̃2

1 = s1

and p̃2
2 = s2 with (p̃1 − p̃2)2 = q2 kept fixed.

FIG. 1. One-loop graph for a meson decay.

The quark structure of the initial and final mesons is given in terms of the vertices Γ1 and Γ2, respectively.
The initial pseudoscalar meson vertex has the spinorial structure Γ1 = iγ5G1/

√
Nc; the final meson vertex has the

structure Γ2 = iγ5G2/
√

Nc for a pseudoscalar state and the structure Γ2µ = [Aγµ + B(k1 − k3)µ] G2/
√

Nc, A = −1,
B = 1/(

√
s2 + m1 + m3) for an S–wave vector meson.

The double spectral densities f̃ of the form factors are obtained by calculating the relevant traces and isolating the
Lorentz structures depending on p̃1 and p̃2. These invariant factors f̃ account for the two–particle singularities in the
Feynman graph.

For q2 < 0 the spectral representations of the form factors have the form [18]

fi(q
2) =

1

16π2

∞
∫

(m1+m3)2

ds2ϕ2(s2)

s+

1
(s2,q2)
∫

s−

1
(s2,q2)

ds1ϕ1(s1)
f̃i(s1, s2, q2)

λ1/2(s1, s2, q2)
, (2)

where the wave function ϕi(si) = Gi(si)/(si − M2
i ) and

s±1 (s2, q
2) =

s2(m2
1 + m2

2 − q2) + q2(m2
1 + m2

3) − (m2
1 − m2

2)(m
2
1 − m2

3)

2m2
1

±
λ1/2(s2, m2

3, m
2
1)λ

1/2(q2, m2
1, m

2
2)

2m2
1

and λ(s1, s2, s3) = (s1 + s2 − s3)2 − 4s1s2 is the triangle function 2. The analytical continuation of the expression (2)

2The spectral densities f̃ include proper subtraction terms. These subtraction terms have been determined in [18] by matching
the structure of the heavy quark expansion in the quark model to the structure of the heavy-quark expansion in QCD
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Numerical	analysis:	

q To	explain	the	excess	of	angular	observable	𝑃HI in	𝐵 → 𝐾∗ℓℓ, we	require

𝐶E
c�,+ ∼ −1,	which	is	based	on	the	global	fitting,		

Descotes-Genon etal,	JHEP1606(16)

q 𝐵\ → 𝜇&𝜇' constraint,	𝐵𝑅 𝐵\ → 𝜇&𝜇' = (2.8';.p&;.n)×10'E LHCb-CMS

q 𝑅O is	not	sensitive	to	the	𝐵 → 𝐾	form	factors,	we	use	the	result

0.7 ≤ 𝑅𝑒 𝑋� − 𝑋+ ≤ 1.5, 	 Xℓ = 𝐶E
c�,ℓ − 𝐶:;

c�,ℓ

q Constraints	from	ℓz → ℓ{𝛾

q The	ranges	of	relevant	parameters	are	set	to	be

found as:

CLQ,ℓ
9 = −

1

cSM

(

kbℓksℓ
4m2

Φ

−
ybℓysℓ
4m2

∆

)

,

CLQ,ℓ
10 =

1

cSM

(

kbℓksℓ
4m2

Φ

+
ybℓysℓ
4m2

∆

)

, (25)

where cSM = VtbV ∗
tsαGF/(

√
2π) is a scale factor from the SM effective Hamiltonian. It is

worth mentioning that the interaction CLQ,µ
10 O10 can contribute to Bs → µ+µ−. Since the

experimental data are consistent with the SM prediction, to consider the constraint from

Bs → µ+µ−, we adopt the expression for the BR as [29]:

BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM
=

∣

∣

∣
1− 0.24CLQ,µ

10

∣

∣

∣

2

. (26)

With 1σ errors, the allowed range for CLQ,µ
10 is obtained as CLQ,µ

10 = (0.21, 0.79). We use this

result to constrain the free parameters. Since the RK is insensitive to the B → K transition

form factors [95], in order to study the anomaly of RK , we require that the allowed range

of parameters has to satisfy [29]:

0.7 ≤ Re[Xe −Xµ] ≤ 1.5 , (27)

where Xℓ = CLQ,ℓ
9 − CLQ,ℓ

10 , and the RK data with 1σ errors are used.

Since the parameters in the decays ℓi → ℓjγ, h → µτ , ∆aµ, and B → K(∗)ℓ+ℓ− are

strongly correlated, in the following analysis, we take the current upper limits of BR(ℓi →

ℓjγ) shown in Table I as the inputs and attempt to find the allowed parameter space, such

that the excesses in ∆aµ and B → K(∗)ℓ+ℓ− can be satisfied, and the BR(h → µτ) can be

as large as possible.

From (cR)ji in Eq. (14), the dominant effects on the radiative LFV processes are from

the φ5/3 and the top-quark loop; thus, there is no possible cancellation in any of the decay

amplitudes. With the upper bound of BR(µ → eγ), we see that k†
13k̃32 and k̃†

13k32 have

to be very small. In order to explain the excesses of muon g − 2 and B → K∗µ+µ−, we

set k31 = k̃31 ≈ 0. As a result, BR(h → eµ) is negligible in this model. The related

parameters for τ → (µ, e)γ decays are k31,32k̃33 and k̃31,32k33, respectively. These parameters

simultaneously influence h → (µ, e)τ , muon g − 2, and b → sµ+µ−; therefore we have to

analyze these processes together to get the allowed parameter space.

10

0.21 < CLQ,µ
10 < 0.79

Hiller,	Schmaltz,	PRD90(14)

mLQ 2 [700 , 1500 ] GeV, {k22, k̃22, y22} 2 [�0.1 , 0.1] ,

{k33, k̃33, y33} 2 [�0.01, 0.01] , {k23, k̃23, y23} 2 [�0.1 , 0.1] ,

k32 2 sign(k22)[0, 0.5] , k̃32 2 [�0.5 , 0.5] , y32 2 �sign(y22)[0 , 0.5]

Hiller,	Schmaltz,	PRD90(14)



q With	the	setting	ranges	of	parameters,	we	scan	the	relevant	parameter	
spaces

v correlation	between	𝐶E
c�,+𝑎𝑛𝑑	𝐶:;

c�,+ is	given	below	figure	(a)

!a"

!2.5 !2.0 !1.5 !1.0 !0.5 0.0
!1.0

!0.5

0.0

0.5

1.0

C9
LQ,Μ

C
10L
Q
,Μ

!b"

!1.3 !1.2 !1.1 !1.0 !0.9

!4

!2

0

2

4

C9
LQ,Μ

#
aΜ
$
10
9

v correlation	between	Δ𝑎+		𝑎𝑛𝑑	𝐶E
c�,+ is	given	below	figure	(b)



v correlation	between Xℓ = 𝐶E
c�,ℓ − 𝐶:;

c�,ℓ𝑎𝑛𝑑	𝐶E
c�,+ is	given	below	figure	
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!
X
Μ

v The	SM	Higgs	can	couple	to	the	LQs	through	the	scalar	potential,	the	
signal	strength	parameter	𝜇��of	Higgs	to	diphoton will	be	modified;	By	
taking	proper	values	of	parameter,		the	contributions	of	LQ	can	fit	the	
current	LHC	data

A. Higgs diphoton decay

The Higgs measurement is usually described by the signal strength parameter, which is

defined as the ratio of observation to the SM prediction and expressed as:

µf
i =

σ(pp → h)

σ(pp → h)SM
·

BR(h → f)

BR(h → f)SM
≡ µi · µf , (7)

where f stands for the possible channels, and µi(µf) denotes the signal strength of production

(decay). Although vector-boson fusion (VBF) can also produce the SM Higgs, we only

consider the gluon-gluon fusion (ggF) process because it is the most dominant. The diphoton

Higgs decay approached the precision measurement since the 125 GeV Higgs was observed.

Therefore, any significant deviation from the SM prediction (i.e., µf
i ̸= 1) can imply the new

physical effects.

As stated earlier, the SM Higgs can couple to the LQs via the scalar potential. From

Eq. (5), it can be seen that after spontaneous symmetry breaking (SSB), the quartic terms

H†HΦ†
7/6Φ7/6 and H†HTr(∆†

1/3∆1/3) can lead to trilinear couplings of Higgs to LQs as:

L ⊃ µhΦh
(

φ−5/3φ5/3 + φ−2/3φ2/3
)

+ µh∆h
(

δ−1/3δ1/3 + δ−2/3δ2/3 + δ−4/3δ4/3
)

, (8)

where µhΦ = λHΦv and µh∆ = λH∆v. With the couplings in Eq. (8), the effective Lagrangian

for hgg by LQ-loop can be formulated as:

∆Lhgg =
αs

8π

(

µhΦ

m2
Φ

A0(ξΦ) +
3µh∆

2m2
∆

A0(ξ∆)

)

hGaµνGa
µν , (9)

where ξX = 4m2
X/m

2
h and the loop function is given by:

A0(x) = x(1− xf(x)) (10)

with f(x) =
[

sin−1(1/
√
x)
]2

for x > 1. Accordingly, the signal strength of the Higgs

production and decay to diphoton can be respectively obtained as:

µi =

∣

∣

∣

∣

∣

1 +
v

A1/2(ξt)

∑

X=Φ,∆

nXµhX

m2
X

A0(ξX)

∣

∣

∣

∣

∣

2

,

µγγ =

∣

∣

∣

∣

∣

1 +
vNc

2

∑

X=Φ,∆ Q2
XA0(ξX)µhX/m2

X

A1(ξW ) +Q2
tNcA1/2(ξt)

∣

∣

∣

∣

∣

2

, (11)
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Summary:

q Lepton	non-universality	is	challenged	in	semileptonic B	decays

q We	study	the	resolution	with	leptoquarks,	the	excesses	in	𝐵 →

𝐾(∗)ℓ&ℓ'can	be	explained	when	the	constraints	from	radiative	leptons	

and	𝐵\ → 𝜇&𝜇' are	included

q The	detailed	analysis	on		𝑅K and	𝑅K∗ problem	is	in	progress;	More	

constraints	from	rare	K,	D	and	B	decays	need	to	further	check		


